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Understanding repertoire sequencing data through a multiscale
computational model of the germinal center
Rodrigo García-Valiente 1,2,3,15, Elena Merino Tejero1,2,3,15, Maria Stratigopoulou4,5, Daria Balashova 1,2,3, Aldo Jongejan 1,2,3,
Danial Lashgari1,2,3, Aurélien Pélissier6,7, Tom G. Caniels5,8, Mathieu A. F. Claireaux5,8, Anne Musters9,10, Marit J. van Gils 5,8,
María Rodríguez Martínez 6, Niek de Vries 9,10, Michael Meyer-Hermann 11,12, Jeroen E. J. Guikema 4,13, Huub Hoefsloot 14 and
Antoine H. C. van Kampen 1,2,3,14✉

Sequencing of B-cell and T-cell immune receptor repertoires helps us to understand the adaptive immune response, although it
only provides information about the clonotypes (lineages) and their frequencies and not about, for example, their affinity or antigen
(Ag) specificity. To further characterize the identified clones, usually with special attention to the particularly abundant ones
(dominant), additional time-consuming or expensive experiments are generally required. Here, we present an extension of a
multiscale model of the germinal center (GC) that we previously developed to gain more insight in B-cell repertoires. We compare
the extent that these simulated repertoires deviate from experimental repertoires established from single GCs, blood, or tissue. Our
simulations show that there is a limited correlation between clonal abundance and affinity and that there is large affinity variability
among same-ancestor (same-clone) subclones. Our simulations suggest that low-abundance clones and subclones, might also be of
interest since they may have high affinity for the Ag. We show that the fraction of plasma cells (PCs) with high B-cell receptor (BcR)
mRNA content in the GC does not significantly affect the number of dominant clones derived from single GCs by sequencing BcR
mRNAs. Results from these simulations guide data interpretation and the design of follow-up experiments.
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INTRODUCTION
The germinal center (GC) plays a crucial role in the adaptive
immune response1–3. GCs are microanatomical structures found in
secondary lymphoid organs and are formed when an adaptive
response is initiated. These structures are responsible for a process
called affinity maturation during which the affinity and specificity
of the BcR for the Ag is improved over the course of several weeks.
The GC reaction begins with the activation of a limited number of
antigen (Ag)-specific B cells that start to proliferate (clonal
expansion) to form the so-called GC dark zone (DZ), as defined
by histology staining. During the proliferation of these B cells, now
called centroblasts (CBs), their BcR is changed due to somatic
hypermutations (SHMs), which increase or decrease the binding
affinity of the BcR for the Ag. The CBs differentiate to centrocytes
(CCs) and migrate to the GC light zone (LZ) where they collect Ag
presented by follicular dendritic cells (FDCs) and, subsequently,
interact with T-follicular helper (Tfh) cells to become positively
selected to return to the DZ to undergo further rounds of
proliferation and SHM. Memory B cells (MBCs) and PCs are output
cells (OCs) from the GC. In general, MBCs are of lower affinity than
PCs, and are produced mostly at the initial state of the GC
reaction, while higher affinity PCs are produced at later stages4

although this might be related to the nature of the Ag5.

Mammals have an immense immune repertoire comprising B
cells and T cells with unique BcRs and T-cell receptors (TcRs) to
combat the large variety of Ags. The B-cell repertoire has been
estimated to include about 1015 members for the naive repertoire
although a much smaller fraction of mature B cells is maintained
in our body6. The diversity of BcR results from several processes
that include their development in the bone marrow through
somatic recombination of V(D)J genes that encode the receptor
and induce junctional diversity, and pairing of different BcR heavy
and light chains7. Finally, additional diversity is created by SHMs in
the GC. The BcR is a heterotetramer composed of two
immunoglobulin heavy chains (IgHs) and two immunoglobulin
light chains (IgL). Each chain harbors three complementary
determining regions (CDRs 1–3) that encompass the most variable
parts of the Ab and are responsible for Ag binding. The four BcR
framework regions (FWRs 1–4) mostly provide structural support
for the CDRs8–10.
Immune receptor repertoires in blood or tissue can be profiled

using next-generation sequencing technologies11–14. These BcR
and TcR repertoire-sequencing experiments have been applied for
a broad range of applications, including vaccinology, infection,
and (auto)immune disorders15–21. Typically, the pre-processing of
repertoire-sequencing data results in a set of clones and their
abundancies in the measured samples. A clone represents a
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lineage of B cells stemming from the same unmutated common
ancestor, which is a naive B cell that initiated a GC reaction as a
founder cell. Each clone comprises one or more subclones that
differ due to SHM and, therefore, may differ in binding affinity.
Each subclone encompasses cells with identical BcRs.
High-abundance clones are a result of Ag-driven clonal

expansion and selection in the GC. The top fraction of these
clones are generally referred to as dominant clones and provide
good candidates for further characterization in terms of binding
specificity and affinity22, neutralization capacity, and other
functional properties23. Identified (dominant) clones may also
provide good candidates for novel mAb therapeutics such as TNF
inhibitors to treat autoimmune disorders24, or to neutralize SARS-
CoV-225. In addition, they can be used to monitor immune
responses during disease or after vaccination12. The selection of
such candidate B-cell clones is likely to be the most successful
when focusing on functional B-cell populations (dominant clones,
tissue-infiltrating B cells, plasmablasts, PCs, and MBCs). It is
generally assumed that higher abundant clones (dominant clones)
have higher affinities due to their Ag-driven expansion and
selection in GCs1,3,26. Experiments to further characterize reper-
toires are not always performed because they can be time-
consuming and/or expensive. In addition, sometimes one only
performs bioinformatics analyses for the interpretation of the
repertoire data27.
Measuring binding affinities for all hundreds to thousands of

clones resulting from repertoire sequencing is, at the moment,
infeasible. Since, in practice, one typically selects a specific
sequence from a (dominant) clonal lineage as a starting point to
create recombinant Ab and, subsequently, measure affinity, one
has little information about the variation of binding affinities (or
other properties) within a clone. Another point of consideration is
the fact that, in the case of RNA repertoire sequencing, the
abundance of the clones might be inflated by high immunoglo-
bulin RNA content in PCs. It has been reported that differentiation
of B cells into PCs is accompanied by up to a 100-fold increase in
immunoglobulin production rate, facilitating the production of
secreted Abs28–33, which may lead to incorrect identification of the
dominant clones.
In previous work, we developed a model of the GC based on

ordinary differential equations (ODEs) that suggested that there is
only a limited correlation between clonal abundance and
affinity34. However, in this ODE model we could not analyze
individual clones and, therefore, the correlation was based on
subclone abundances. Moreover, ODEs provide a continuous
approximation to large cell populations and, therefore, low
frequent subclones were not adequately represented in this
model. In addition, the rate of differentiation into PCs was only
based on the affinity of the mother CC. To investigate the
reproducibility of the results obtained with the ODE model we set
out to modify and extend a much more sophisticated and
comprehensive multiscale model representing a single GC that we
recently developed35. This extended multiscale (eMS) model
integrates an agent-based model (ABM) to describe the cellular
dynamics, and a system of ODEs representing a core gene-
regulatory network (GRN) involved in PC differentiation. Using the
eMS model, we aimed to gain a more general insight in the
relation between abundance and affinity, the variation of affinity
within a clone, and the effect of PCs on the identification of
dominant clones by RNA-Seq given their higher BcR mRNA levels.
Since we simulate B-cell repertoires generated from a single GC,
we also determined to what extent results from these simulations
deviate from experimental repertoires established from blood,
tissue, and single-cell/single GCs.
Our simulations show that there is a limited correlation between

clonal abundance and affinity and, in addition, there is large
affinity variability within a clone. Our simulations also suggest that
PCs do not have a large influence on the number of dominant

clones inferred from RNA-Seq repertoires from single GCs. Finally,
as expected, characteristics (e.g., number of clones, diversity of
repertoire) of immune repertoires generated by the eMS model
deviate significantly from experimental repertoires obtained from
blood and tissue. In contrast, repertoires obtained from single-cell
sequencing of GC B cells, and from bulk RNA-Seq repertoires from
single GCs are in better agreement. Results from these simulations
guide data interpretation and the design of follow-up
experiments.

RESULTS
The extended multiscale model (eMS model)
We recently developed a multiscale model (MS model) of the GC
reaction35. The MS model integrates a pre-existing ODE model
representing a core GRN that drives PC differentiation36, and an
pre-existing ABM of the GC representing the cellular mechan-
isms37,38. In short, the GC is represented as a 3D sphere of
equidistant grid points that also defines the DZ and LZ. CXCL12
and CXCL13 chemokines gradients, resulting from stromal cells in
the DZ and FDCs in the LZ, respectively, are imposed on the grid
and allow the CBs, CCs, and Tfh cells to preferentially migrate to
their respective zones. Founder B cells enter the GC (Supplemen-
tary Fig. 1) as CBs, and proliferate and mutate in the DZ, some of
them differentiate to CC and migrate to the LZ. There, the CCs
compete to interact with the FDCs to capture Ags and present the
Ags to the Tfh cells to receive survival signals. If the signals are
strong enough, the CC becomes positively selected and comes
back to the DZ as a CB. During CBs proliferation, part of the cells
differentiate to PCs or MBCs that will leave the GC and have no
further function during the simulation. Lack of sufficient survival
signals causes the CC to go into apoptosis. The duration of a
single-GC simulation is of 504 h (21 days) at a time resolution of
0.002 h.
The eMS model (Fig. 1) that we use in this paper is an extension

of the MS model. To facilitate the interpretation of BcR repertoires,
we implemented a BcR sequence representation for each B cell
and OC (Fig. 2a) and now use a SHM fate tree (Fig. 2b and
Supplementary Fig. 2) to determine the region and type of
mutation. The BcR representation includes the immunoglobulin
heavy chain (IgH) and not the light chain (IgL) to be in agreement
with experimental repertoire data, which are generally based on
IgH. The affinity of the BcRs in the model is based on the distance
between the position of the BcR sequence and the position of the
optimal BcR in a continuous shape space37–39. The shape space
does not simulate repertoires specific for an Ag and, therefore,
interpretation of the simulations are generalizations37,38,40,41. A
complete list of model parameters and values is given in
Supplementary Text 1.
The eMS model allows to track the frequencies and affinities of

all clones and subclones, (sub)clones, (Fig. 3). The frequency of
each subclone equals the number of cells it represents. The clone
frequency is the sum of all cells from all subclones. Dominant
clones are defined either as the upper 25% of most frequent
clones, or as those clones that represent ≥0.5% of the total
number of sequences in an experimental repertoire (or cells in a
simulation). The latter threshold is based on the analyses of
experimental datasets42. The D50 index represents the fraction of
clones that account for 50% of the BcR sequences.
We performed nine simulations with the eMS model model to

generate DNA and RNA-based repertoires. The overall GC
dynamics (number of cells, DZ-to-LZ ratio, affinity) for one
simulation is shown in Supplementary Fig. 3 and is in agreement
with experimental observations4,43–46 and with the previous MS
model35.
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Comparison to experimental immune repertoires. The number of
clones at the end of the nine repeated simulations varies between
4 and 18 at the end (day 21) of the simulation (Supplementary
Table 2). The maximum number of clones during the GC reaction
is ~200 and equals the number of founder cells (Table 1). The
number of clones found in most experimental datasets is orders or
magnitude larger compared to the clones produced in our single-
GC simulations (Supplementary Fig. 4a). The number of dominant
clones from the simulations is more comparable to the experi-
mental data but also is on the lower side compared to it
(Supplementary Fig. 4b). Finally, the D50 values resulting from the
simulation are larger compared to most of the values obtained
from the experimental data (Supplementary Fig. 4c) indicating
that in the experiments a smaller proportion of clones account for
50% of the sequences.
The number of clones identified in experimental repertoires

from the peripheral blood, synovial tissue, and synovial fluid
samples are similar but deviate largely from the simulations. This
was expected since the number of clones is an accumulation of
multiple (past) immune responses involving many GCs, and
because peripheral blood contains many naive B cells (singletons).
The SPF mouse gaGC results are in line with the simulations at day
21, while the number of clones resulting from the chronic
sialadenitis human samples (single GCs) is much higher.
Since the eMS model represents a single GC, we compared our

simulation results at different timepoints with the single-GC
datasets (viii to x). The values for dataset (x; single GC from mice)
are close to the values in their corresponding timepoint of our
simulation results (Fig. 4). Interestingly, there also is some
resemblance between the range of minimum and maximum
values observed in the experimental and simulated data. Dataset
(viii) matches our simulation results at 100–200 h (peak of the GC
size45 and clonal diversity47,48), while dataset (ix) has a larger
deviation from our simulations (Table 1). This deviation may be
related to the nature of the dataset (steady-state GCs, unknown
timepoint, different mice).

Progression of clonal size. Figure 5 shows the evolution of clonal
size (abundance) during the GC reaction for the dominant and all
clones. Dominant clones start outgrowing the average of the
population at 120 h of the GC reaction. Supplementary Fig. 5
shows the evolution of the mean clonal sizes of dominant clones

and non-dominant clones according to the criteria for dominance.
Supplementary Table 2 shows the number of (dominant) clones at
the end (day 21) of the GC reaction. Their size increases due to
proliferation, while at the same time the number of clones is
reduced as a result of their competition (see below).

The number of (sub)clones remains at a steady level after the clonal
expansion phase but shows a large variability in their affinities. We
determined the number of clones and subclones during the GC
reaction. The GC was seeded with ~200 founder cells (i.e., 200
clones each represented by a single cell). Not all these clones
survived the 21-day GC reaction due to clonal competition (Fig. 6).
The subclones that descend from founder cells that enter the GC
at an early stage generally have more chance to survive because
their lineages had more time to increase their affinity and,
consequently, outcompete other clones from low-affinity founder
cells that entered at later stages. Nevertheless, few clones from
late founder cells were able to survive through the full duration of
the GC reaction resulting in an average of 12 clones at the end of
the simulations (Supplementary Table 2). The number of clones
and subclones increases during the initial clonal expansion phase
of the GC reaction, after which they slowly decrease while the ratio
of subclones per clone slowly increases (Supplementary Fig. 6).
The steady number of subclones is in agreement with our
previous but simpler ODE model34, and is the result of the balance
between B-cell proliferation that produces an additional subclone,
and SHM that, by definition, removes a single B cell from a
subclone and creates a new subclone (different BcR). Conse-
quently, subclones also stay of relatively low abundance
(Supplementary Fig. 7). Inspection of the clones at day 21 shows
that these are very heterogeneous with respect to the affinity of
their subclones. These “high-affinity” clones even harbor B cells of
extremely low affinity (Fig. 7).

There is a (weak) trend between (sub)clonal abundance and
affinity. Next, we aimed to determine the relation between
(sub)clonal abundance and affinity at day 21 of the GC reaction.
The median affinity of each clone was calculated from all its B
cells, MBCs, and PCs. The median affinity increases with clonal
abundance in the range from one to ~100 but stabilizes for higher
abundances. The maximum affinity (1.0) is not reached (Fig. 8a).
Using an abundance threshold (>=75th percentile of abundance,

Fig. 1 General scheme of our single-GC eMS model. Founder B cells enter the GC and go through a process of division and SHM in the DZ
and selection in the LZ, based on the affinity of their BcRs. Each B cell (CB/CC) represented by the ABM embeds a GRN that is affected by BcR
and CD40 signaling to drive PC differentiation. The affinity of BcRs can assume values between 0 and 1 and is based on an abstract
shape space.
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or >=0.5% of the total counts) to define dominant clones, and the
75th percentile of the median affinity to indicate high-affinity
clones; we observe several low-abundance clones of high median
affinity (upper left quadrant Fig. 8a) but also several high-
abundance clones of lower median affinity (lower right quadrant).
Inspection of the subclonal abundance and median affinity also
shows a trend of increasing affinity with abundance but also
shows a large variability of affinity for subclones with similar
abundance. For example, subclones of low abundance may cover
the whole affinity range (Fig. 8b). This variability decreases for the
higher-abundance subclones, which are generally of higher
affinities.

The fraction of PCs does not affect the number of dominant
clones. We aimed to investigate if a 100-fold higher immunoglo-
bulin mRNA abundance in PCs leads to erroneous detection of
dominant clones in a GC RNA-based repertoire at day 21 of the GC
reaction. DNA-seq repertoires are not biased by high BcR mRNA
abundance in PCs since for each B cell a single sequence of

immunoglobulin gene is generated (Fig. 3). Consequently, in our
simulations, we count the number of B cells for each clone to
represent the DNA-seq repertoire, while in the RNA-based
repertoire each PC is represented by 100 BcR sequences. For the
simulated DNA-based repertoires and the simulated RNA-based
repertoires this results in a very similar number of dominant
clones at day 21 (Fig. 9 and Supplementary Table 2). Most of the
clones are a mixture of cell types. Consequently, the RNA-based
repertoire increases the frequencies of most clones and, therefore,
does not have a large effect on the number of dominant clones
(Supplementary Table 2) since it also shifts the threshold
accordingly. It does, however, greatly increase the difference in
sequence counts between the most expanded clones and the less
expanded clones, offering a distorted view. In addition, some
minor dominant clones in the DNA-based repertoire may appear
as non-dominant in the RNA-based repertoire due to their lack or
low abundance of PCs present in the GC at that time point.
The general behavior in the 9 simulations is consistent

(Supplementary Fig. 9) and show that not all dominant clones

Fig. 2 BcR representation and SHM fate tree. a BcR sequence reconstruction and representation. From a IgH Fab repertoire sequence from
dataset viii, whose FWR1 and FWR4 are partially missing, we infer its V and J genes and the corresponding partially reconstructed germline
using IMGT High-VQuest. Red vertical bars represent mutations. The colors on each sequence represent the unknown (gray) and known
(turquoise and dark blue) IgH genes. The CDRs appear are marked with black borders. Due to the highly variable nature of the D gene and the
junctional diversity, only part of the CDR3 can be assigned to its corresponding germline sequence (i.e., small part corresponding to the V and
J germline sequence). The remaining part is taken as is from the repertoire sequence. b SHM fate tree. After each cell division, m mutations
occur in a daughter cell. This tree shows the probabilities of affecting the different FWR and CDR regions, and the probabilities for making a
specific type of mutation (replacement or silent) and its effect (changing affinity, lethal, neutral).
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Table 1. Comparison of different timepoints of our simulations with single-GC data at an unknown timepoint (datasets (viii) and (ix)).

Dataset Timepoint (hours) Clones Dominant clones Dominant
clones (%)

D50 index Berger–Parker index Pielou’s
evenness index

Dataset viii Unknown, GCs from the
same human lymph node

144
(77–591)

30
(20–41)

21
(4.9–28.7)

0.04
(0.01–0.07)

0.17
(0.09–0.33)

0.63
(0.56–0.71)

Dataset ix Unknown,
gut-associated GCs from
several mice

28
(12–101)

7
(3–12)

28.9
(5.9–53.8)

0.18
(0.05–0.39)

0.24
(0.1–0.45)

0.87
(0.68–0.96)

Simulations 0 0
(0–0)

0
(0–0)

– – – –

Simulations 50 96
(86–114)

54
(45–62)

56
(49–63)

0.20
(0.18–0.22)

0.03
(0.02–0.04)

0.9
(0.88–0.90)

Simulations 100 180
(150–198)

80
(73–89)

44
(41–53)

0.22
(0.19–0.23)

0.03
(0.02–0.05)

0.93
(0.91–0.94)

Simulations 150 128
(100–153)

33
(23–42)

26
(19–30)

0.05
(0.02–0.07)

0.19
(0.09–0.27)

0.74
(0.62–0.79)

Simulations 200 59
(43–64)

18
(12–26)

35
(27–41)

0.04
(0.02–0.08)

0.33
(0.15–0.62)

0.59
(0.43–0.71)

Simulations 250 32
(25–41)

15
(11–24)

51
(34–70)

0.06
(0.02–0.12)

0.39
(0.20–0.82)

0.58
(0.27–0.77)

Simulations 300 23
(18–31)

12
(8–19)

56
(34–73)

0.07
(0.04–0.15)

0.39
(0.19–0.88)

0.58
(0.20–0.80)

Simulations 350 17
(15–25)

11
(6–17)

67
(35–82)

0.09
(0.06–0.17)

0.38
(0.19–0.92)

0.57
(0.16–0.80)

Simulations 400 15
(13–21)

11
(4–15)

71
(31–100)

0.11
(0.06–0.2)

0.40
(0.19–0.94)

0.59
(0.13–0.81)

Simulations 450 13
(10–19)

9
(3–16)

75
(30–100)

0.13
(0.07–0.22)

0.46
(0.17–0.96)

0.59
(0.09–0.85)

Simulations 504 11
(4–18)

9
(2–15)

78
(50–93)

0.13
(0.07–0.25)

0.47
(0.15–0.98)

0.60
(0.07–0.85)

Dominant clones were defined as those with counts >=0.5% of the total cell counts. Format (bold; italic bold) denotes the best matching timepoints for
datasets (viii) and (ix), respectively.

Fig. 3 Definition of (sub)clones and their frequencies in the context of a B-cell lineage tree. The founder cell is shown for completeness
and is represented by a single cell that enters the GC. Each circle represents a subclone is a group B cells that have the same (mutated) BcR
sequence. Different mutations in different positions of the BcR are represented with colored slashes. The five subclones have a common
unmutated ancestor and together define a clone. Each subclone is a mixture of CBs, CCs, MBCs, and PCs although a subclone may also consist
of a single cell type. The frequency fDNA(i) of a subclone is determined by counting the number of cells for each subclone. This frequency can
be experimentally obtained with DNA-based repertoire sequencing. Alternatively, frequencies fRNA(i) can be determined from RNA-based
sequencing but this may artificially increase the subclone frequency if the RNA content of PCs is much higher (a factor of 100 in the figure)
compared to CBs/CC/MBCs. The frequency F of a clone is the sum of the RNA-based or DNA-based frequencies of the subclones.
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are of high affinity (i.e., median affinity above the 75th percentile).
The median affinity of a clone is calculated under the assumption
that each cell of the clone contains a single BcR sequence with a
specific affinity. Consequently, in a RNA-based repertoire the
presence of PCs may skew the median affinity because each PC
contributes with 100 sequences to the clone it is part of,
compared to a B cell or MBC that only have one single sequence.

In some cases, this leads to different high-affinity clones in the
RNA-based repertoire.

DISCUSSION
BcR repertoire sequencing provides information about clones and
their frequencies in measured samples. In this work, we used the

Fig. 4 Comparison of nine simulations to dataset x (single GC). Comparison showing the (a) number of clones, (b) the number of dominant
clones, defined as clones accounting for at least 0.5% of the repertoire; c fraction of dominant clones; d D50 index (the fraction of clones that
account for 50% of the BcR sequences); e Berger–Parker index (the fraction of cells that belong to the highest abundant clone), and f Pielou’s
evenness index (measure of the homogeneity of clone sizes ranging from 0, no evenness, to 1, complete evenness). The black curve and gray
area represent the median value and observed range from nine simulations. The dot and vertical lines represent the median and observed
minimum and maximum range in dataset (x) for the variable at 6 and 15 days after immunization. Vertical black line and dot represent mice
immunized with chicken gamma globulin (CGG); vertical red line and dot represent mice immunized with ovalbumin, hemagglutinin or
ovalbumin conjugated with 4-hydroxy-3-nitrophenylacetyl hapten).
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eMS model to facilitate interpretation of repertoire-sequencing
data. In particular, we aimed to study (i) the extent that our
simulations represent experimental immune repertoires obtained
from blood, tissue, and single GCs, (ii) the relationship between
clonal abundance and affinity, (iii) the affinity variability within a
clone, and (iv) the extent that the fraction of PCs may affect the
identification of dominant clones.
The eMS model is initialized with ~200 clones which number

decrease to a much smaller number of clones at the end of the GC
reaction. However, the number of subclones remains relatively
stable. Most subclones present low cell counts after the clonal
expansion phase due to the balance of proliferation and SHM that
creates new subclones. The comparison of experimental blood
and tissue repertoires to our simulation results at day 21 of the GC
reaction (assuming that this is the most representative time point
for this) shows in most cases a large difference in the number of
clones, the number of dominant clones, and the D50 values. These

differences mostly result from the fact that the cellular composi-
tion of single-GC repertoires is not the same as the composition of
repertoires obtained from blood or tissue, which are composed of
different types of B cells, PCs, and MBCs from past immune
responses involving many GCs that may be affected by antibody
feedback49,50. Moreover, not all subclones produced during the
GC reaction may travel to blood.
The comparison of our simulation results with single-GC

repertoires shows that the simulation is in agreement with
dataset (x) in which mice were measured at two timepoints during
the GC reaction48. The comparison with our simulations indicates
that the single-GC repertoire samples obtained from a chronic
sialadenitis patient51 may be at its peak response (maximum GC
size in terms of cells). The steady-state gut-associated mice GC
repertoire dataset samples52 match different results at different
timepoints. There seems to be large variability in the number and
size of clones and in the diversity indexes between single GCs,
that can be related to the nature of the antigen(s), the lymph
node, the species, the duration of the GC response or other
biological and experimental factors. Large variability between GCs
has also been previously reported46,53.
The median affinity of the clones in our simulations shows a

weak relationship with clonal abundance, and several high-affinity
clones comprise subclones that span a wide range of affinities.
This is in agreement with our previous computational ODE
model34. There are few studies that provide information about the
relation between clonal abundance and affinity. For example, Tan
et al.54 investigated the immune response following influenza
vaccination. They selected a limited number of plasmablasts to
create recombinant Abs and, subsequently, determined their
binding affinity and neutralization capacity for the influenza virus.
They found that clones with larger abundances have 10 to 1000-
fold higher affinities compared to singleton clones and that within
the same clonal family there is up to 43-fold differences in affinity.
This is in agreement with our findings, that show important
differences between dominant clones and low-abundance clones
(e.g., when converting the median affinity of clones in Fig. 7 to
experimental affinity38 there is a difference in affinity of up to 90-
fold) and also indicate that there is not a straight-forward relation
between abundance and affinity (Figs. 6 and 7). A recent single-
cell study from Mathew et al.5 identified a dominant clone with
low avidity for HA protein of the influenza A virus. In addition, they
found a clone in which two subclones showed a difference of
almost a million-fold in affinity. Recently, it has been reported in
an OVA-immunized mouse model that affinities measured for

Fig. 5 Results from nine simulations showing the evolution of the
average clonal sizes of all clones (purple) and all the dominant
clones (green) during a 21-day GC reaction. The y axis is gapped
between 2500 and 4000 cells to facilitate the visualization.
Dominant clones were defined as those with abundances higher
or equal than the 75th percentile of clonal abundances. The shaded
area represents the minimum and maximum of the mean values for
each group obtained from the simulations. When the number of
clones within a group is low, changes on its clonal composition (a
clone may stop belonging to the group because it stops fitting the
criteria or because it is outcompeted and removed) lead to big
changes in the means.

Fig. 6 Lineage trees of all founder cells from one representative simulation. Lineage trees of all founder cells from one representative
simulation (Simulation 1; Table 1) ordered by the appearance of the founder cell in the GC (x axis) and with their daughter cells shown at their
time of the appearance in the GC (y axis). Approximately 200 lineages each derived from founder cells that enter between t= 0 and t= 115 h
evolve through the GC reaction. See Supplementary Fig. 8 for an individual B-cell lineage. The x axis shows the timepoints at which the
founder cells enter the GC. The y axis shows the evolution of the clones during 21 days (504 h). Colors denote affinity of each individual cell.
Apoptotic B cells due to lethal mutations in a FWR (non-functional BcR) appear in black. The initial affinity of the founder cells is 0.01 (yellow).
Each lineage comprises a mixture of GC B cells, MBCs, and PCs. Eighteen clones survived in the GC at day 21, while the other clones have been
outcompeted and disappeared from the GC reaction.
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plasma cells from blood samples do not correlate with clonal
abundance on both a clone and subclone level55.
Our simulations confirm that the selection of a single specific

subclone (from a dominant clone) for further experimental
characterization (e.g., affinity measurement, neutralization
potency) does not give a representative picture of a clone and
lead to incomplete or erroneous conclusions. In addition, our
simulations show that affinity can vary more within a clone than
between clones. Both of these observations are in agreement with
literature as cited above. For example, although in Fig. 6 the
median affinity of the top three dominant clones is greater than
0.75, they host subclones that cover most of the affinity range

(0–1). Our simulations suggest that low-abundance (sub)clones
might also be of interest since they may have high affinity for the
Ag. However, in practice it may prove difficult to select a low-
abundance but high-affinity (sub)clone without trial and error.
Our simulations show that a 100-fold increase in BcR mRNA

content in PCs does not have a large effect on the number or
dominant clones nor on the specific clones that become dominant
despite the fact that this has been postulated as a word of caution.
However, it does increase the variability in abundance between
the dominant clones to some extent. The observation that the
number of dominant clones does not largely change is
unexpected but mainly due to the fact that also the low-

Fig. 7 Clonal affinity at day 21. Boxplots representing clonal affinity, showing the large variation in subclonal affinity for 18 surviving clones
in the GC at day 21 of a representative simulation (Simulation 1; Supplementary Table 2). The boxplots are sorted and labeled according to the
cell count of their corresponding clone. A strong correlation between clonal abundance and affinity that we expected to result from clonal
expansion in combination with affinity maturation, is absent. In addition, we also observe highly abundant but low-affinity clones and vice
versa. Horizontal line: median. Boxes: 25th and 75th percentiles. Whiskers: 1.5 times the interquartile range. Dots: outliers. The top 5 clones are
dominant according to the threshold of ≥=75th percentile of clonal abundances (blue) while the top 13 clones are dominant according to the
threshold of ≥=0.5% of the cell counts (red).

Fig. 8 Relationship between abundance and affinity. Relationship between clone (a) and subclone (b) abundance and median affinity at day
21 of the GC reaction for a representative simulation. Each dot represents a (sub)clone. The horizontal green line denotes the 75th percentile
threshold of median affinities. The vertical red line denotes the 75th percentile threshold of clonal abundance. The vertical purple line denotes
the 0.5% threshold. The black dotted line denotes a lowess fit. The density map represents the concentration of subclones.
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abundance clones represent a mixture of GC B cells, PCs (albeit in
lower numbers than more abundant clones) and/or MBCs and,
therefore, accounting for RNA content does change proportionally
the abundancy of most clones and, consequently, the threshold
defining the dominant clones, also shifts. However, our model
represents a single GC, where the PCs do not accumulate as they
migrate away from it, while in peripheral blood or tissue the
proportions of MBCs, PCs and B cells are different and,
consequently, “dominant” clones identified from such samples
may indeed be the result of high-abundance BcR RNA content in
PCs. In addition, it is unknown how many PCs are produced by a
single GC and, consequently, whether or not the proportions that
result from our simulation are correct. Simulating blood or tissue
repertoires would require simulating past and present immune
responses (including multiple GC reactions over time49, possibly
different antigens) and knowing the average life span of B cells,
MBCs, and PCs. Further experimental work is required to establish
the type of samples and frequency at which the presence of PCs
might result in false positive dominant clones.
Although BcR and TcR repertoires are typically generated with

bulk RNA or DNA sequencing of blood or tissue samples, there is a
progression toward the generation of immune repertoires at the
single cell or single-GC level such as the aforementioned study of
Nowasad and coworkers who studied B-cell repertoires in gut-
associated GCs52. Others investigated clonality at the single-GC
level48,56 without, however, measuring full repertoires. Single-cell
sequencing strategies have also enabled the combined transcrip-
tome and immune receptor determination of GC B cells, which
may help to improve molecular mechanisms relevant for our
model5,57–60. One advantage of single-cell strategies is that both
the heavy and light chain or alpha and beta chain of the BcR and
TcR, respectively, can be determined. For example, the FB5P-seq
has been developed and used to determine the transcriptome and
receptors (including isotype) of MBCs, PCs, plasmablasts (PB), and
sorted GC B cells from human tonsils61. Such datasets are
expected to increasingly appear in the near future and will help
to further validate and improve our model.
Several approaches to simulate repertoire data have been

developed62–68. SHazaM65 introduces random mutations in an

input sequence or generates a set of simulated sequences based
on a lineage tree using an input sequence as the most recent
common ancestor. AbSim66 simulates time-resolved repertoires
via in silico V–D–J recombination and SHM. immuneSIM67

generates B-cell repertoires based on V, D, J germline gene sets
and usage; occurrence of insertions and deletions; clonal
sequence abundance and SHM (based on AbSim) rate. These
generated repertoires can be additionally modified by incorporat-
ing motifs, codon replacement and/or changing the sequence
similarity architecture. A more recent approach, immuneML68 can
generate repertoires as randomly generated amino acid
sequences, where the amino acids are chosen from a uniform
distribution, and can introduce antigen or disease-associated
signals in experimental or simulated repertoire datasets.
These methods have a data-driven focus on V(D)J recombina-

tion and on imposing SHMs or other variations in the BcR
sequences to generate clonal lineages. None of these approaches
simulate a GC reaction and, more importantly, none of these
considers affinity, PCs, and MBCs as we required for our
application.
As such, we consider our model as a first step towards a new

type of immune repertoire simulation through the simulation of a
GC reaction. Insights from these simulations may facilitate the
development of strategies to select (sub)clones for further
characterization or development to therapeutic antibodies. How-
ever, to simulate repertoires that are more representative for
experimental immune repertoires, additional steps have to be
taken. First, our model does not represent a specific Ag but
instead uses the “shape space” concept to facilitate affinity
maturation38,39,69. Consequently, we cannot simulate repertoires
specific for an Ag and, therefore, interpretation of our simulations
are generalizations. More realistic and sophisticated representa-
tions might overcome this in the future41,70, perhaps even
considering the effect that mutations outside the antigen-
binding site can have over rigidity, entropic penalty and,
ultimately, affinity71,72. Secondly, the mechanism for PC differ-
entiation remains to be fully elucidated. Consequently, our
implementation of PC differentiation using a small GRN might
need to be improved, for example, to account for other

Fig. 9 Beeswarm plots in log10 scale of DNA-seq and RNA repertoires. Beeswarm plots in log10 scale of (a) DNA-seq and (b) RNA
repertoires at day 21 of the GC reaction generated by a representative simulation. Each dot represents a clone, some of which are a mixture of
B cells, MBCs and/or PCs. In both cases, we find 5 and 13 dominant clones using the 75th percentile or 0.5% threshold, respectively. Dot colors
indicate the fraction of PC BcR sequences within each clone, whose range is about a factor of 100 times larger for the RNA-based repertoire.
The size of the symbol represents the median affinity of that clone (small symbol: affinity below the 75th percentile). The horizontal lines
denote the 75th percentile (red) and 0.5% (purple) abundance thresholds to define dominant clones.
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transcription factors and cytokines73,74. In addition, we did not
implement an explicit mechanism for MBC differentiation but
rather defined these MBCs as OCs not being classified as PCs35,40.
Obviously, our approach towards the generation of MBCs and PCs
directly affects the number of OCs being generated. This, in turn,
may affect the extent to which they affect the identification of
dominant clones. Unfortunately, to the best of our knowledge, it is
unknown how many MBCs and PCs are produced by single GCs
during its entire lifetime, making it difficult to validate the number
of OCs produced by our model. However, the aforementioned
publication from Mathew et al. allows to make a rough estimate of
GC B cells, MBCs, and PCs in mediastinal lymph nodes after
infection with the influenza A virus5. From Fig. 1 and the
underlying data table (kindly provided by Dr. Angeletti, University
of Gothenburg) in their paper the fraction of MBCs and PCs from
all GC B cells and OCs is about 3.24% and 2.43% at day 14 and
1.7% and 0.7% at day 28, respectively, which is comparable to the
total number of OCs we observe at day 21 in our simulations
(2.1–2.7%). The implementation of alternative scenarios for MBC
and PC differentiation may further improve the model75,76. Thirdly,
the number of GC founder cells has been estimated to range from
two to hundreds with highly diverse early GCs48,77–79. The number
of founder cells (~200) used in our simulations is within this range
but on the high end, although some of the single-GC datasets we
have analyzed present up to 600 clones. Reducing the number of
founder cells will lead to a delayed GC growth and a lesser
number of clones present in the GC at day 21. The diversity of the
GC at later stages has been estimated in several studies and
ranges from 4 to ~120 clones48,52,77,80. Tas and coworkers
observed GCs that were predominantly monoclonal but that
these are relatively rare48. The number of clones at the end of our
simulations was between 4 and 18, which is at the lower end of
the spectrum. The current model provides little control over the
selection pressure to significantly change the number of clones at
the end of the GC reaction without disturbing the overall GC
dynamics. For example, a simulation with 1500 founder cells
resulted in no more than 35 clones at 21 days (data not shown).
Therefore, it is worthwhile to expand the model with a mechanism
that allows controlling the clonality of the GC to generate a larger
variety of repertoires.
This eMS model results in more realistic simulations compared

to previous versions thanks to the implementation of the BcR
sequence representation on every B cell, MBC, and PC associated
to a specific affinity value based on their CDRs and FWRs and to
the implementation of a continuous range of affinity values. Our
model represents an interesting first step into a new type of
immune repertoire simulation given that there is a simulation
where OCs are produced and where there is competition over
time between clones and subclones.

METHODS
Repertoire-sequencing datasets
We selected three samples from each of seven blood or tissue
repertoire-sequencing studies. The datasets comprise (i) a human
single-cell RNA-Seq-based repertoire obtained from three human
cell subsets: peripheral blood IgG+ B cells, peripheral plasmablasts
after tetanus toxoid immunization, and MBCs isolated after
influenza vaccination81, from which we used two IgG+ samples
and one MBC sample, (ii) a human single-cell DNA-based B-cell
repertoire dataset produced in-house from healthy blood
donors82, (iii) a human bulk RNA-Seq repertoire dataset represent-
ing HIV infected patients and (iv) HIV-uninfected controls83, from
which we used three samples of patients with broadly neutralizing
Abs and three samples from the uninfected controls, (v) a human
bulk RNA-Seq repertoire dataset from rheumatoid arthritis
samples from blood and (vi) one sample from synovial tissue

and two from synovial fluid84, (vii) a human bulk RNA-Seq
repertoire dataset comprising healthy controls and different
immune-mediated disorders15 from which we used three Crohn’s
disease peripheral blood mononuclear cell (PBMC) samples whose
CD19+ B cells were sorted. In addition, we selected all the
samples from single-GC repertoire-sequencing studies: (viii) an
human in-house bulk DNA-based repertoire dataset generated
from ten single GCs (two replicates each, singleton and non-
shared clones are excluded from the analysis) from a cervical
lymph node resected out of a 46-year-old woman suffering from
chronic sialadenitis51, (ix) fifteen single-cell RNA-Seq samples from
mice steady-state specific pathogen-free (SPF) gut-associated GCs
(gaGCs)52 and (x) a single-cell RNA-Seq dataset of single GCs from
mice immunized with chicken gamma globulin (CGG) (eight and
twelve samples, taken at days 6 and 15 after immunization,
respectively) and from mice immunized with ovalbumin (OVA),
hemagglutinin (HA) or ovalbumin conjugated with 4-hydroxy-3-
nitrophenylacetyl hapten (NP-OVA) (eleven samples, taken at day
6 after immunization)48. For these two last datasets we used the V-
CDR3-J assignments provided by their authors, while for the
remaining datasets, the BcR sequences the V-CDR3-J assignments
were done using Change-O65,85. The clonal groups were
established according to on V-J stratification, identical CDR3
length and a CDR3 nucleotide similarity of 85% or more. In order
to account for sequencing errors, for dataset (viii) only shared
clones between replicates are taken into account. In order to
account for sequencing depth, for datasets (ix) and (x) we
calculated the Chao1 estimator as in their original analyses and
used it as a reference.

Definition of output cells
PC differentiation was mechanistically represented by embedding
the core GRN in every B cell, MBC, and PC represented by the ABM
of the eMS model. This network comprises three differential
equations (Eqs. (1)–(3)) with p, b, and r representing BLIMP1, BCL6,
and IRF4, respectively. BCR and CD40 (Eqs. (4) and (5)) represent
the signaling strength upon interaction of the B cell with the FDC-
presented Ag and the Tfh cell, respectively. Affinity assumes a
value between zero and one (see below). The values for the
parameters (transcription and decay rates, dissociation constants)
are given in Supplementary Table 1. CCs that are positively
selected by Tfh cells return to the DZ where they further
proliferate and, subsequently, differentiate to a PC if the BLIMP1
level is high enough ([BLIMP1] ≥ 8.10−8 M). The PCs leave the GC
through the DZ.

dp
dt

¼ μp þ σp
k2b

k2b þ b2
þ σp

r2

k2r þ r2
� λpp (1)

db
dt

¼ μb þ σb
k2p

k2p þ p2
k2b

k2b þ b2
k2r

k2r þ r2
� λb þ BCRð Þb (2)

dr
dt

¼ μr þ σr
r2

k2r þ r2
þ CD40� λr r (3)

BCR ¼ bcr0
k2b

k2b þ b2
(4)

CD40 ¼ affinity � cd0 k2b
k2b þ b2

(5)

For the differentiation of MBCs, we followed a different
approach based on asymmetric division of Ag, due to a lack of a
clear molecular mechanism underlying this cellular event. It has
been shown that Ag internalized by B cells is asymmetrically
distributed to the daughter cells during B-cell division86. However,
a possible effect on B-cell fate was not investigated. Consequently,
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it was hypothesized that asymmetric division might affect B-cell
fate87, and this hypothesis formed the basis of the ABM that we
use. The original model assumes that CCs positively selected by
Tfh cells recycle to the DZ for further proliferation and SHM and
that during B-cell division the captured Ag is distributed
asymmetrically to both daughter B cells. Subsequently, the Ag-
retaining CBs differentiate into OCs, which were not further
specified as PC or MBCs. Although there was no direct
experimental evidence that asymmetric division determines
B-cell fate, the implementation of this mechanism made the
computational model in better agreement with B-cell migration
patterns observed in experiments of photoactivated B cells43. In
the eMS model we maintained mechanism of asymmetric division
for producing OCs but we distinguished between PCs and MBCs.
The MBCs are defined as OCs resulting from asymmetric B-cell
division but do not have a high BLIMP1 level. This approach
towards PC and MBC differentiation ensured agreement with an
experimentally observed temporal switch in which lower affinity
MBCs are mainly produced at the initial phase of the GC, while
higher affinity PCs are produced after the peak response4.

Influx of founder cells
Following experimental observations48 we initiated the GC
simulations with ~200 founder B cells each that enter during
the initial phase of the GC reaction38. Accordingly, founder B cells
enter the GC with a probability p(influx).

p influxð Þ ¼ μ � Δt
1þ e

t�α
β

(6)

With Δt= 0.002 h corresponding to the time resolution of the
ABM, α= 96 h representing the time point at which influx stops,
β= 6 h and represents the rate smoothness, and μ= 2 cells/hour
represents the inflow rate. Integration of this equation shows that
this leads to approximately 200 founder B cells (Supplementary
Fig. 1). At time point t= 0, this gives a probability of P= 0.004. In
the first hour, this leads to an influx of ~0.004*(1/Δt)= 2 cells.

BcR sequence representation
We built a set of partially reconstructed germline heavy-chain V(D)
J sequences from the BcR repertoire of two single GCs (dataset viii)
using IMGT High-VQuest88,89 (Fig. 2a). Due to the high variability of
the CDR3 (average length of ~48 nucleotides90), it is difficult to
correctly identify the short D gene (average length of nearly 24
nucleotides), or to precisely determine the junctional diversity91.
Consequently, we identified the V and J sequences, which include
part of the CDR3 region. The remaining CDR3 part will remain
identical to the experimental sequence. Due to the placement of
primers in the FWR1 and FWR4, part of these regions is missing.
We fully reconstruct these regions in the reconstructed sequence.
For the reconstructed sequence, we annotated the four framework
regions (FWR) and the three complementary determining regions
(CDRs). Each founder B cell is associated with a BcR nucleotide
sequence that is randomly selected (without replacement) from
this set of unique V-CDR3-J sequences. This BcR sequence includes
the immunoglobulin heavy chain (IgH) and not the light chain
(IgL) so our results can be easily extrapolated, as most clonal
repertoire datasets and analyses only study the IgH. During the GC
reaction this sequence is mutated (see below) and inherited by
the (founder) B-cell progeny.

Affinity and shape space
The calculation of the binding affinity between a membrane-
bound BcR and a specific Ag requires computer modeling
approaches such as molecular dynamics and, therefore, are very
compute intensive92. This makes these methods impractical for
use in computational simulations of the GC because for each

(combination of) SHM the binding affinity would have to be
recalculated. Therefore, in our computational model, affinities
assume values between 0 and 1, which are based on an abstract
“shape space” that was initially proposed by Perelson et al.39 to
represent the complementarity between the BcR and Ag protein
shape. In earlier versions of the GC ABM this space was defined as
a 4-dimensional discrete grid comprising 10,000 positions in
which the Ag assumed a fixed position and the BcR moved
through this space as a result of SHM38,39,69 (Fig. 1). The distance
(L1-norm) in this space between the Ag and BcR represents the
number of mutations required to acquire the maximum affinity,
and is converted to an affinity value using a Gaussian weight
function. Consequently, affinity values in the model cannot be
compared to experimental binding affinities and do not represent
binding to a specific Ag37,38,40,41. The shape space approach to
determine affinity values only facilitates the process of affinity
maturation. However, the Gaussian weight function is parameter-
ized to be in agreement with experimental data regarding the
number of mutations and observed affinity fold changes. In our
extended model we changed to a continuous shape space grid
because the discrete grid can only provide 25 different affinity
values, which is too limiting in our case where we represent the
BcR as nucleotide sequences and, consequently, needed to
accommodate much more different affinity values as result of
SHM. Our continuous shape space has a length of ten (arbitrary
units) for each dimensions and allows an infinite number of
affinity values between 0 and 1. Upon SHM, the BcR will move in a
randomly selected dimension. with a step size s sampled from a
normal distribution with a mean of one and a standard deviation
of 0.1 (s ∼ N(μ= 1, σ= 0.1)). Subsequently, the L1-norm
(Manhattan distance) between the Ag and BcR is calculated and
converted to an affinity value using the Gaussian weight function.
Each step in the shape space may increase or decrease the
distance from the Ag and, consequently, decrease or increase the
affinity by an amount according to the step size.

Fate of somatic hypermutations
Twenty-four hours after the initiation of the GC reaction, SHM is
switched on with a rate of 10−3 mutations per base pair per B-cell
division93,94. Although both the BcR heavy and light chain are
important in Ag binding, we simplified our approach by only
considering mutations in the heavy chain, in agreement with our
BcR sequence representation. Since the average length of a BcR
heavy chain is ~400 nucleotides resulting in 0.4 heavy-chain
mutations per cell division, we modeled the number of mutation
(m) as m ∼Poisson (λ= 0.4). This results in one or more mutations
in ~33% of the cell divisions (Supplementary Fig. 2). Each mutation
affects a specific FWR or CDR region, which is selected
probabilistically using a SHM fate tree (Fig. 2b). This decision tree
also determines the type of mutation (replacement or silent), and,
according to its type and region, its effect (changes affinity, is
lethal or is neutral). Once a region is selected then within this
region, we randomly replace a nucleotide and check from the
corresponding amino acid sequence if the type of mutation
(replacement, lethal, neutral, or silent) agrees with the selected
mutation type from the tree. If not, a different nucleotide will be
selected until the process is successful or all combinations are
exhausted, in which case a new position is randomly selected from
the region and the nucleotide replacement restarts. We do not
take into account mutation hot/cold spots95. Our decision tree is
an extension of the fate tree previously constructed from
experimental data but which does not distinguish between the
individual FRW and CDR regions62. We extended this tree to
represent all seven FRW/CDR regions. The probabilities in the tree
were obtained from sequence data from non-expressed (non-
functional) κ light chain transgenic mice immunized with
nitrophenyl (NP)95 resulting in mutation patterns in the absence
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of Ag-driven selection pressure. Preferably, these probabilities
should be estimated from (human) heavy-chain non-functional
sequences but to the best of our knowledge, such data are
currently not available. Therefore, we assumed that these
probabilities are representative for the human heavy chain. We
also assumed that only CDR replacement mutations affect affinity,
not considering the effect that mutations outside the antigen-
binding site can have over rigidity, entropic penalty and,
ultimately, affinity71,72. The fate tree does not account for key or
blocking mutations96. The probabilities for lethal mutations are
taken from the original fate tree62. A lethal mutation will set the
affinity of the CB to zero and will make it go into apoptosis in the
DZ97. Compared to the original ABM, the use of the fate tree
changes the probability of a SHM taking place and the probability
of the affinity of a cell changing when a SHM takes place. In the
original model, a maximum of one SHM per daughter cell could
happen; the SHM probability was set to 0.5 resulting in one
mutation, on average, during each B-cell division, and said
mutations always leaded to a change in affinity. In contrast, in
the eMS model more than one SHM per daughter cell can happen,
the probability of at least one SHM happening is of 0.33 and the
probability for a mutation to change the affinity is of
[(0.1*0.79)+ (0.03*0.76)+ (0.19*0.75)] ≈0.244 (Fig. 2b). If we take
into account the different probabilities for a daughter B-cell of
having one, two, or three mutations per division (Supplementary
Fig. 2), this leads to an approximate total probability of
(1*0.27+ 2*0.05+ 3*0.01)*[(0.1*0.79)+ (0.03*0.76)+(0.19*0.75)]
≈0.1 of a mutation changing affinity taking place in a daughter B
cell after division.
To ensure the consistency of affinity values across the mutated

sequences during the GC reaction, we store each combination of
affinity and BcR sequence in a database (Supplementary Text 1).

Simulations
We performed nine simulations to generate DNA and RNA-based
repertoires with our multiscale model, using different random
seeds to account for the stochasticity of the ABM. The initial
affinities of the founder cells are set to identical but a low value of
~0.01 corresponding to a Manhattan distance of approximately 6
between BcR and Ag in the shape space. From each simulation a
DNA-based BcR repertoire was generated at 21 days of a single-GC
reaction. In this DNA-based repertoire the number of BcR
sequences reflect the relative abundances of the GC B cells,
MBCs, and PCs, i.e., each BcR represents a single cell. From the
DNA-based repertoire, we generated a RNA-based repertoire by
assuming a BcR mRNA abundance in PCs that is 100-fold higher
compared to CBs/CCs/MBCs. Although our analysis of IgH
expression in single-cell RNA-Seq datasets from human tonsils
(Supplementary Fig. 10) points to a scenario where the median
value of immunoglobulin production rate is ninefold higher in PCs
than in GC B cells and MBCs, our assumption is a more extreme
scenario in line with the previously reported increase in some
cases of up to 100-fold in the immunoglobulin production rate33.
Consequently, we multiply the frequency of each PC subclone per
100 (Fig. 3). Effectively, we generate 100 BcR sequences for each
PC. Consequently, this may raise the frequency of the PC subclone
and its clonal group above the threshold that defines dominant
clones, resulting in its false assignment as a dominant clone
(Supplementary Fig. 11A). To determine the relation between
(sub)clonal abundance and affinity we performed a locally
weighted scatterplot smoothing (Lowess)98.

Comparison to BcR repertoires
We compared the number of clones, the number of dominant
clones and the D50 index of our results at 21 days with the
repertoires from blood, tissue or single GCs measured at unknown
timepoint (datasets i to viii). We extended this comparison for the

single-GC datasets (datasets viii to x), including the clone
dominance using the Berger–Parker99 index (the fraction of cells
that belong to the highest abundant clone), the homogeneity of
clone sizes using the Pielou’s evenness index100 (a value between
0, dissimilar, and 1, similar) and the fraction of dominant clones
obtained from our simulations at different timepoints.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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